Références bibliographiques (Exploitation des données bibliographiques sur la croissance et développement du système racinaire d’une plante)

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L,Noh YS,Amasino R,Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

Beeckman T, Burssens S, Inze D (2001) the peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–41

Bell JK, McCully ME (1970) A histological study of lateral root initiation and development in Zeamays. Protoplasma 70:179–205

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens
G,Friml J (2003) Local, efflux-dependent auxin gradients as a common module
for plant organ formation. Cell 115:591–602

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B,Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism.Science 273:948–950

Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) Agene expression map of the Arabidopsis root. Science 302:1956–1960

Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K,Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Onckelen HV, Montagu MV, Inze D (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler
U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns.Science 318:801–806

Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential
expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876

Beall F. & Tipping B., 1989. Plant growth-promoting rhizobacteria in forestry. In: Proceedings of the forest research marketing. Abstract 117, Ontario Forest Research Committee, Toronto.

Bending G.D., Poole E.J., Whipps J.M. & Read D.J., 2002. Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on rootfungus interactions and plant growth. FEMS Microbiol. Ecol., 39, 219-227.
Berta G., Fusconi A. & Hooker J.E., 2002. Arbuscular mycorrhizal modifications to plant root systems. In: Gianinazzi S. & Schuepp H., eds. Mycorrhizal technology: from genes to bioproducts achievement and hurdles in arbuscular mycorrhizal research. Basel, Switzerland: Birkhäuser, 71-101

Chanway C.P., 1997. Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. Forest Sci., 43, 99-112.

Chanway C.P., Radley R.A. & Holl F.B., 1991.Inoculatio of conifer seed with plant growth promoting Bacillus strains causes increased seedling emergence and biomass. Soil Biol. Biochem., 23, 575-580.

Chanway C.P. & Holl F.B., 1993. Ecological growth response specificity of two Douglas-fir ecotypes inoculated with coexistent beneficial rhizosphere bacteria. Can. J. Bot., 72, 582-586.

Canon WA (1949) A tentative classification of root systems. Ecology 30:542 548

Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of,maize. Plant Physiol 142:254–264

Casero P, Casimiro I, Rodriguez-Gallardo L, Lloret P (1993) Lateral root initiation by asymmetrical transverse divisions of pericycle cells in adventitious roots of Allium cepa. Protoplasma 176:138–144

Casero P, Casimiro I, Lloret P (1995) Lateral root initiation by asymmetrical transverse divisions by pericycle cells in four plant species: Raphanus sativus, Helianthus anuus, Zea mays, and Daucus carota. Protoplasma 188:49–58

Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze´ D,Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

(1995) A pathway for lateral root-formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant Physiol 127:262–271

Chadwick AV, Burg SP (1970) Regulation of root growth by auxin-ethylene interaction. Plant Physiol 45:192–200

Clowes F (1961) Apical meristems. Blackwell, Oxford Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I,Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHRmovement defines a single layer of endodermis in plants. Science 316:421– 425

De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

De Smet I, Zhang H, Inze´ D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M,Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

Devaiah BN, Nagarajan VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

Dharmasiri N, Dharmasiri S, EstelleM(2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation Plant J 37:340–353

Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG,Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellularorganization of the Arabidopsis thaliana Root. Development
119:71–84

Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

Dubrovsky JG, Doerner PW, Colon-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in arabidopsis. Plant Physiol 124:1648 1657

Ehteshamul-Haque S. & Ghaffar A., 1993. Use of rhizobia in the control of root rot diseases of sunflower, oak and munybean. J. Phytopathol., 138, 157-163.

Frey-Klett P., Churin J.L., Pierrat J.C. & Garbaye J., 1999.Dose effect in the dual inoculation of an ectomycorrhizal fungus and a mycorrhiza helper bacterium in two forest nurseries. Soil Biol. Biochem., 31, 1555-1562.

Feix G, Hochholdinger F, Park WJ (2002) Maize root system and genetic analysis of its formation In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 239–248

Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R,
Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binaryswitch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-offunction mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression ofstabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44:382–395

Gamalero E. et al., 2002. Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol., 155, 293-300.

Gamalero E. et al., 2003. Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol. Biochem., 35, 55-65.

Gamalero E. et al., 2004. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza, 14, 185-192.

Glick B.R., 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol., 41, 109-117.

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

Geiss G, Gutierrez L, Bellini C (2009) Adventitious root formation: new insights and perspectives In: Beeckman T (ed) Root development. Blackwell, Oxford (in press)

Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T,Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jurgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400

Granato TC, Raper CD Jr (1989) Proliferation of maize (Zea mays L.) roots in response tolocalized supply of nitrate. J Exp Bot 40:263–275

Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica junceaembryos. Development 125:879–887

Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcriptionfactor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis
tissue. Plant Cell 12:757–770

Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxinmediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

Hochholdinger F, Zimmermann R (2008) Conserved and diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74

Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004) Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann Bot 93:359–368

Holl F.B., Chanway C.P., Turkingon R. & Radley R., 1988.Growth response of crested wheatgrass (Agropyroncristatum L.), white clover (Trifolium repens L.) to inoculation with Bacillus polymixa. Soil Biol. Biochem., 20, 19-24.

Inukai Y, Mawi M, Nagato Y, Kitano H, Yamauchi A (2001) Characterization of rice mutants deficient in the formation of crown roots. Breed Sci 51:123–129

Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396

Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M,Machida C, Machida Y (2002) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol 43:467–478

Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

Kapulnik Y., Okon Y. & Henis Y., 1995. Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol., 31, 881-887.

Kawata S, Shibayama H (1965) On the lateral root primordia formation in the crown roots of rice plants. Proc Crop Sci Soc Japan 33:423–431

Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani S, Bellotti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

Laplaze L, Benkova E, Casimiro I,Maes L, Vanneste S, Swarup R,Weijers D, Calvo V, Parizot B,Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T,Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation.Plant Cell 19:3889–3900

Lindberg T. & Granhall U., 1984. Isolation and characterization of dinitrogenfixing bacteria from the rhizosphere of temperate cereals and forage grasses. Appl. Environ. Microbiol., 48, 683-689.

Lippmann B., Leinhos V. & Bergmann H., 1995. Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. I. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew. Bot., 69, 31-36.

Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K,Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143 Lim J, Helariutta Y, Specht CD, Jung J, Sims L, Bruce WB, Diehn S, Benfey PN (2000) Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 12:1307–1318
Lim J, Jung JW, Lim CE, Lee MH, Kim BJ, Kim M, Bruce WB, Benfey PN (2005) Conservation and diversification of SCARECROW in maize. Plant Mol Biol 59:619–630

Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative highaffinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritionalcues. Proc Natl Acad Sci USA 102:13693–13698

Liu KH, Tsay YF (2003) Switching between the two action modes of the dualaffinity nitrate transporter CHL1 by phosphorylation. EMBO J 22:1005–1013

Liu C, Xu Z, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOBdomain protein required for adventitious root formation in rice. Plant J 43:47–56

Lloret P, Casero P, Pulgarin A, Navascues J (1989) The behaviour of two cell populations in the pericycle of Allium cepa, Pisum sativum, and Daucus carota during early lateral root development.Ann Bot 63:465–475

Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture
and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey RA, Bartel B,Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137:681–691

Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005) Quantitative trait loci
controlling root growth and architecture in Arabidopsis 40 thaliana confirmed by heterogeneous inbred family.Theor Appl Genet 110:742– 753

Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66 Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119

Ma¨ho¨nen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel twocomponent hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943

Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18:2066–2073

Mhirit O., 1994. Le cèdre de l'Atlas (Cedrus atlantica Manetti) : présentation générale et état des connaissances à travers le réseau Silva Mediterranea « le cèdre ». Ann. Rech. For. Maroc, 27, 4-21.

Mhirit O. et al., 1999. Le grand livre de la forêt marocaine. Sprimont, Belgique : Editions Mardaga. Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

Munos S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16:2433–2447

Nair M.G., Safir G.R. & Siquiera J.O., 1991. Isolation and identification of vesicular-arbuscular mycorrhiza stimulatory compounds from Clover (Trifolium 41 repens) roots. Appl.Environ. Microbiol., 57, 434-439.

Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

Nordstrom LJ, Clark CA, Andersen B, Champlin SM, Schwinefus JJ (2006) Effect of ethylene glycol, urea, and N-methylated glycines on DNA thermal stability: the role of DNA base pair composition and hydration. Biochemistry 45:9604–9614


Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

O'Neill G.A., Radley R.A. & Chanway C.P., 1992. Variable effects of emergencepromoting rhizobacteria on conifer seedling growth under nursery conditions. Biol. Fertil. Soils, 13, 45-49.

Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170– 177
Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chriqui D, Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148

Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200

Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507– 515

Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the
shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006a) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006b) A central role for the nitrate transporter NRT2.1 in the 42 integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006)
Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472
Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

Sarkar AK, Luijten M,Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R,Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

Sato Y, Nishimura A, Ito M, Ashikari M, Hirano HY, Matsuoka M (2001) Auxin response factor family in rice. Genes Genet Syst 76:373–380

Scheres B, Laurenzio LD, Willemsen V, Hauser MT, Janmaat K, Weisbeek P,
Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62

Schipper B., Scheffer R.J., Lugtenberg B.J.J. & Weisbeck P.J., 1995. Biocoating of seeds whith plant growth-promoting rhizobacteria to improve plantestablishment. Outlook Agric., 24, 179-185.

Schönwitz R. & Ziegler H., 1989. Interaction of maize roots and rhizosphere
microorganisms. Z. Pflanzenern. Bodenk., 152, 217-222.

Shishido M., Paterson D.L., Massicote H.B. & Chanway C.P., 1996. Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol. Ecol., 21, 109-119.

Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

Song SK, Hofhuis H, Lee MM, Clark SE (2008) Key divisions in the early arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis.Dev Cell 15:98–109

Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L,Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture.Nature Genet 39:792–796

Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G,Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nature Cell Biol 10:946–954

Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37:801–814

Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Douras P, Touraine B (2003) Transcription factor genes with expression correlated to nitrate-related root plasticity of Arabidopsis thaliana. Plant Cell Environ 26:459– 469

van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62–65

van den Berg C, Weisbeek P, Scheres B (1998) Cell fate and cell differentiation status in the Arabidopsis root. Planta 205:483–491

Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G,
Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell
17:3035–3050

Wang S, Ichii M, Taketa S, Xu L, Xia K, Zhou X (2002) Lateral root formation in rice (Oryza sativa): promotion effect of jasmonic acid. J Plant Physiol 159:827– 832

Varese G.C. et al., 1996. Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effect on in vitro growth of the mycobiont. Symbiosis, 21, 129-147.

Vonderwell J.D. & Enebak S.A., 2000. Differential effects of rhizobacterial strain and dose on the ectomycorrhizal colonization of loblolly pine seedlings. For. Sci., 46(3), 411-437.

Yao M.K., Tweddell R.J. & Desilets H., 2002. Effect of two vesicular-arbuscular
mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of diseases caused by Rhizoctonia solani. Mycorrhiza, 12, 235-242.

Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC,
Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

Welch D, Hassan H, Blilou I, Immink R, Heidstra R, Scheres B (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev 21:2196–2204

Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM,
Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10.