Aida M, Beis D, Heidstra R, Willemsen V,
Blilou I, Galinha C, Nussaume L,Noh YS,Amasino R,Scheres B (2004) The PLETHORA
genes mediate patterning of the Arabidopsis root stem cell niche. Cell
119:109–120
Beeckman T, Burssens S, Inze D (2001) the
peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–41
Bell JK, McCully ME (1970) A histological
study of lateral root initiation and development in Zeamays. Protoplasma
70:179–205
Benkova
E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens
G,Friml J (2003) Local, efflux-dependent
auxin gradients as a common module
for plant organ formation. Cell
115:591–602
Bennett MJ, Marchant A, Green HG, May ST,
Ward SP, Millner PA, Walker AR, Schulz B,Feldmann KA (1996) Arabidopsis AUX1
gene: a permease-like regulator of root gravitropism.Science 273:948–950
Birnbaum K, Shasha DE, Wang JY, Jung JW,
Lambert GM, Galbraith DW, Benfey PN (2003) Agene expression map of the
Arabidopsis root. Science 302:1956–1960
Blilou I, Xu J, Wildwater M, Willemsen V,
Paponov I, Friml J, Heidstra R, Aida M, Palme K,Scheres B (2005) The PIN auxin
efflux facilitator network controls growth and patterning in Arabidopsis roots.
Nature 433:39–44
Boerjan W, Cervera MT, Delarue M, Beeckman
T, Dewitte W, Bellini C, Caboche M, Onckelen HV, Montagu MV, Inze D (1995) superroot,
a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell
7:1405–1419
Brady SM, Orlando DA, Lee JY, Wang JY,
Koch J, Dinneny JR, Mace D, Ohler
U, Benfey PN (2007) A high-resolution root
spatiotemporal map reveals dominant expression patterns.Science 318:801–806
Breuninger H, Rikirsch E, Hermann M, Ueda
M, Laux T (2008) Differential
expression of WOX genes mediates
apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876
Beall F. & Tipping B., 1989. Plant
growth-promoting rhizobacteria in forestry. In: Proceedings of the forest
research marketing. Abstract 117, Ontario Forest Research Committee, Toronto.
Bending G.D., Poole E.J., Whipps J.M. & Read D.J.,
2002. Characterisation of bacteria from Pinus sylvestris-Suillus luteus
mycorrhizas and their effects on rootfungus interactions and plant growth. FEMS
Microbiol. Ecol., 39, 219-227.
Berta G., Fusconi A. & Hooker J.E., 2002.
Arbuscular mycorrhizal modifications to plant root systems. In: Gianinazzi S.
& Schuepp H., eds. Mycorrhizal technology: from genes to bioproducts
achievement and hurdles in arbuscular mycorrhizal research. Basel, Switzerland:
Birkhäuser, 71-101
Chanway C.P., 1997. Inoculation of tree roots with
plant growth promoting soil bacteria: an emerging technology for reforestation.
Forest Sci., 43, 99-112.
Chanway C.P., Radley R.A. & Holl F.B.,
1991.Inoculatio of conifer seed with plant growth promoting Bacillus strains
causes increased seedling emergence and biomass. Soil Biol. Biochem., 23,
575-580.
Chanway C.P. & Holl F.B., 1993. Ecological growth
response specificity of two Douglas-fir ecotypes inoculated with coexistent
beneficial rhizosphere bacteria. Can. J. Bot., 72, 582-586.
Canon WA (1949) A tentative classification of root
systems. Ecology 30:542 548
Carraro N, Forestan C, Canova S, Traas J, Varotto S
(2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin
transport and plant architecture determination of,maize. Plant Physiol
142:254–264
Casero P, Casimiro I, Rodriguez-Gallardo L, Lloret P
(1993) Lateral root initiation by asymmetrical transverse divisions of
pericycle cells in adventitious roots of Allium cepa. Protoplasma 176:138–144
Casero P, Casimiro I, Lloret P (1995) Lateral root
initiation by asymmetrical transverse divisions by pericycle cells in four
plant species: Raphanus sativus, Helianthus anuus, Zea mays, and Daucus carota.
Protoplasma 188:49–58
Casimiro I, Marchant A, Bhalerao RP, Beeckman T,
Dhooge S, Swarup R, Graham N, Inze´ D,Sandberg G, Casero PJ, Bennett M (2001)
Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell
13:843–852
Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H,
Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development.
Trends Plant Sci 8:165–171
(1995) A pathway for lateral root-formation in
Arabidopsis thaliana. Genes Dev 9:2131–2142
Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele
F, Gojon A (2001) Major alterations of the regulation of root NO3 uptake are
associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant
Physiol 127:262–271
Chadwick AV, Burg SP (1970) Regulation of root growth
by auxin-ethylene interaction. Plant Physiol 45:192–200
Clowes F (1961) Apical meristems. Blackwell, Oxford
Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY,
Blilou I,Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism
delimiting SHRmovement defines a single layer of endodermis in plants. Science
316:421– 425
De Smet I, Signora L, Beeckman T, Inze D, Foyer CH,
Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root
development of Arabidopsis. Plant J 33:543–555
De Smet I, Zhang H, Inze´ D, Beeckman T (2006) A novel
role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439
De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze
L, Casimiro I, Swarup R, Naudts M,Vanneste S, Audenaert D, Inze D, Bennett MJ,
Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the
basal meristem of Arabidopsis. Development 134:681–690
Devaiah BN, Karthikeyan AS, Raghothama KG (2007a)
WRKY75 transcription factor is a modulator of phosphate acquisition and root
development in Arabidopsis. Plant Physiol 143:1789–1801
Devaiah BN, Nagarajan VK, Raghothama KG (2007b)
Phosphate homeostasis and root development in Arabidopsis are synchronized by
the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159
Dharmasiri N, Dharmasiri S, EstelleM(2005) The F-box
protein TIR1 is an auxin receptor. Nature 435:441–445
DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J,
Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a
nuclear-localized protein required for lateral root formation Plant J
37:340–353
Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L,
Helariutta Y, Freshour G, Hahn MG,Feldmann KA, Benfey PN (1996) The SCARECROW
gene regulates an asymmetric cell division that is essential for generating the
radial organization of the Arabidopsis root. Cell 86:423–433
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig
S, Roberts K, Scheres B (1993) Cellularorganization of the Arabidopsis thaliana
Root. Development
119:71–84
Drew MC (1975) Comparison of the effects of a
localized supply of phosphate, nitrate, ammonium and potassium on the growth of
the seminal root system, and the shoot, in barley. New Phytol 75:479–490
Dubrovsky JG, Doerner PW, Colon-Carmona A, Rost TL
(2000) Pericycle cell proliferation and lateral root initiation in arabidopsis.
Plant Physiol 124:1648 1657
Ehteshamul-Haque
S. & Ghaffar A., 1993. Use of rhizobia in the control of root rot diseases of sunflower, oak
and munybean. J. Phytopathol., 138, 157-163.
Frey-Klett P., Churin J.L., Pierrat J.C. & Garbaye
J., 1999.Dose effect in the dual inoculation of an ectomycorrhizal fungus and a
mycorrhiza helper bacterium in two forest nurseries. Soil Biol. Biochem., 31,
1555-1562.
Feix G, Hochholdinger F, Park WJ (2002) Maize root
system and genetic analysis of its formation In: Waisel Y, Eshel A, Kafkafi U
(eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 239–248
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H,
Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish
the apical-basal axis of Arabidopsis. Nature 426:147–153
Friml J, Yang X, Michniewicz M, Weijers D, Quint A,
Tietz O, Benjamins R,
Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme
K, Offringa R (2004) A PINOID-dependent binaryswitch in apical-basal PIN polar
targeting directs auxin efflux. Science 306:862–865
Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral
root formation is blocked by a gain-offunction mutation in the
SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168
Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M
(2005) Tissue-specific expression ofstabilized SOLITARY-ROOT/IAA14 alters
lateral root development in Arabidopsis. Plant J 44:382–395
Gamalero E. et al., 2002. Morphogenetic modifications
induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system
of tomato differ according to plant growth conditions. New Phytol., 155,
293-300.
Gamalero E. et al., 2003. Characterization of functional
traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal
fungi. Soil Biol. Biochem., 35, 55-65.
Gamalero E. et al., 2004. Impact of two fluorescent
pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root
architecture and P acquisition. Mycorrhiza, 14, 185-192.
Glick B.R., 1995. The enhancement of plant growth by
freeliving bacteria. Can. J. Microbiol., 41, 109-117.
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou
I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master
regulators of Arabidopsis root development. Nature 449:1053–1057
Geiss G, Gutierrez L, Bellini C (2009) Adventitious
root formation: new insights and perspectives In: Beeckman T (ed) Root development.
Blackwell, Oxford (in press)
Geldner N, Anders N, Wolters H, Keicher J, Kornberger
W, Muller P, Delbarre A, Ueda T,Nakano A, Jurgens G (2003) The Arabidopsis GNOM
ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent
plant growth. Cell 112:219–230
Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz
RA, Mayer U, Jurgens G (2004) Partial loss-of-function alleles reveal a role
for GNOM in auxin transport-related, post-embryonic development of Arabidopsis.
Development 131:389–400
Granato TC, Raper CD Jr (1989) Proliferation of maize
(Zea mays L.) roots in response tolocalized supply of nitrate. J Exp Bot 40:263–275
Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced
developmental patterns in Brassica junceaembryos. Development 125:879–887
Haecker A, Gross-Hardt R, Geiges B, Sarkar A,
Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark
cell fate decisions during early embryonic patterning in Arabidopsis thaliana.
Development 131:657–668
Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive
bodenlos mutation affects primary root formation and apical-basal patterning in
the Arabidopsis embryo. Development 126:1387–1395
Hardtke CS, Berleth T (1998) The Arabidopsis gene
MONOPTEROS encodes a transcriptionfactor mediating embryo axis formation and
vascular development. EMBO J 17:1405–1411
Harper RM, Stowe-Evans EL, Luesse DR, Muto H,
Tatematsu K, Watahiki MK, Yamamoto K, Liscum E (2000) The NPH4 locus encodes
the auxin response factor ARF7, a conditional regulator of differential growth
in aerial Arabidopsis
tissue. Plant Cell 12:757–770
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K,
Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial
patterning of the Arabidopsis root through radial signaling. Cell 101:555–567
Hetz W, Hochholdinger F, Schwall M, Feix G (1996)
Isolation and characterization of rtcs, a maize mutant deficient in the
formation of nodal roots. Plant J 10:845–857
Himanen K, Boucheron E, Vanneste S, de Almeida Engler
J, Inze D, Beeckman T (2002) Auxinmediated cell cycle activation during early
lateral root initiation. Plant Cell 14:2339–2351
Hochholdinger F, Zimmermann R (2008) Conserved and
diverse mechanisms in root development. Curr Opin Plant Biol 11:70–74
Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004)
Genetic dissection of root formation in maize (Zea mays) reveals root-type
specific developmental programmes. Ann Bot 93:359–368
Holl F.B., Chanway C.P., Turkingon R. & Radley R.,
1988.Growth response of crested wheatgrass (Agropyroncristatum L.), white
clover (Trifolium repens L.) to inoculation with Bacillus polymixa. Soil Biol.
Biochem., 20, 19-24.
Inukai Y, Mawi M, Nagato Y, Kitano H, Yamauchi A
(2001) Characterization of rice mutants deficient in the formation of crown
roots. Breed Sci 51:123–129
Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y,
Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005)
Crown rootless1, which is essential for crown root formation in rice, is a
target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396
Ivanchenko MG, Muday GK, Dubrovsky JG (2008)
Ethylene-auxin interactions regulate lateral root initiation and emergence in
Arabidopsis thaliana. Plant J 55:335–347
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S,
Tsukaya H, Hasebe M, Soma T, Ikezaki M,Machida C, Machida Y (2002) The
ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a
symmetric flat leaf lamina, encodes a member of a novel family of proteins
characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol
43:467–478
Johnson JF, Vance CP, Allan DL (1996) Phosphorus
deficiency in Lupinus albus. Altered lateral root development and enhanced
expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41
Kapulnik Y., Okon Y. & Henis Y., 1995. Changes in
root morphology of wheat caused by Azospirillum inoculation. Can. J.
Microbiol., 31, 881-887.
Kawata S, Shibayama H (1965) On the lateral root
primordia formation in the crown roots of rice plants. Proc
Crop Sci Soc Japan 33:423–431
Kepinski S, Leyser O (2005) The Arabidopsis F-box
protein TIR1 is an auxin receptor. Nature 435:446–451
King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A
mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant
Cell 7:2023–2037
Landi P, Sanguineti MC, Liu C, Li Y, Wang TY, Giuliani
S, Bellotti M, Salvi S, Tuberosa R (2007) Root-ABA1 QTL affects root lodging,
grain yield, and other agronomic traits in maize grown under well-watered and
water-stressed conditions. J Exp Bot 58:319–326
Laplaze L, Benkova E, Casimiro I,Maes L, Vanneste S,
Swarup R,Weijers D, Calvo V, Parizot B,Herrera-Rodriguez MB, Offringa R, Graham
N, Doumas P, Friml J, Bogusz D, Beeckman T,Bennett M (2007) Cytokinins act
directly on lateral root founder cells to inhibit root initiation.Plant Cell
19:3889–3900
Lindberg T. & Granhall U., 1984. Isolation and
characterization of dinitrogenfixing bacteria from the rhizosphere of temperate
cereals and forage grasses. Appl. Environ. Microbiol.,
48, 683-689.
Lippmann B., Leinhos V. & Bergmann H., 1995. Influence
of auxin producing rhizobacteria on root morphology and nutrient accumulation
of crops. I. Changes in root morphology and nutrient accumulation in maize (Zea
mays L.) caused by inoculation with indole-3-acetic acid (IAA) producing
Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew. Bot.,
69, 31-36.
Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM
(1995) Formation of lateral root meristems is a two-stage process. Development
121:3303–3310
Levesque
MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima
K,Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of
the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143 Lim J,
Helariutta Y, Specht CD, Jung J, Sims L, Bruce WB, Diehn S, Benfey PN (2000)
Molecular analysis of the SCARECROW gene in maize reveals a common basis for
radial patterning in diverse meristems. Plant Cell 12:1307–1318
Lim J, Jung JW, Lim CE, Lee MH, Kim BJ, Kim M, Bruce
WB, Benfey PN (2005) Conservation and diversification of SCARECROW in maize.
Plant Mol Biol 59:619–630
Linkohr BI, Williamson LC, Fitter AH, Leyser HM (2002)
Nitrate and phosphate availability and distribution have different effects on
root system architecture of Arabidopsis. Plant J 29:751–760
Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A,
Malamy JE (2005) The putative highaffinity nitrate transporter NRT2.1 represses
lateral root initiation in response to nutritionalcues. Proc Natl Acad Sci USA
102:13693–13698
Liu KH, Tsay YF (2003) Switching between the two
action modes of the dualaffinity nitrate transporter CHL1 by phosphorylation.
EMBO J 22:1005–1013
Liu C, Xu Z, Chua NH (1993) Auxin polar transport is
essential for the establishment of bilateral symmetry during early plant
embryogenesis. Plant Cell 5:621–630
Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P
(2005) ARL1, a LOBdomain protein required for adventitious root formation in
rice. Plant J 43:47–56
Lloret P, Casero P, Pulgarin A, Navascues J (1989) The
behaviour of two cell populations in the pericycle of Allium cepa, Pisum
sativum, and Daucus carota during early lateral root development.Ann Bot
63:465–475
Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L,
Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability
alters architecture
and causes changes in hormone sensitivity in the
Arabidopsis root system. Plant Physiol 129:244–256
Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L,
Perez-Torres A, Rampey RA, Bartel B,Herrera-Estrella L (2005) An auxin
transport independent pathway is involved in phosphate stress-induced root
architectural alterations in Arabidopsis. Identification of BIG as a mediator
of auxin in pericycle cell activation. Plant Physiol 137:681–691
Loudet O, Gaudon V, Trubuil A, Daniel-Vedele F (2005)
Quantitative trait loci
controlling root growth and architecture in
Arabidopsis 40 thaliana confirmed by heterogeneous
inbred family.Theor Appl Genet 110:742– 753
Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008)
Auxin fluxes in the root apex co-regulate gravitropism and lateral root
initiation. J Exp Bot 59:55–66 Lukowitz W, Roeder A, Parmenter D, Somerville C
(2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis.
Cell 116:109–119
Ma¨ho¨nen AP, Bonke M, Kauppinen L, Riikonen M, Benfey
PN, Helariutta Y (2000) A novel twocomponent hybrid molecule regulates vascular
morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943
Malamy JE, Benfey PN (1997) Organization and cell
differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44
Marchant A, Kargul J, May ST, Muller P, Delbarre A,
Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in
Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO
J 18:2066–2073
Mhirit O.,
1994. Le cèdre de l'Atlas (Cedrus atlantica Manetti) : présentation générale et
état des connaissances à travers le réseau Silva Mediterranea « le cèdre ». Ann. Rech. For. Maroc, 27, 4-21.
Mhirit O.
et al., 1999. Le grand livre de la forêt marocaine. Sprimont, Belgique : Editions Mardaga. Mouchel CF,
Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis
identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation
in the root. Genes Dev 18:700–714
Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates
feedback between brassinosteroid levels and auxin signalling in root growth.
Nature 443:458–461
Munos S, Cazettes C, Fizames C, Gaymard F, Tillard P,
Lepetit M, Lejay L, Gojon A (2004) Transcript profiling in the chl1-5 mutant of
Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation
of another nitrate transporter, NRT2.1. Plant Cell 16:2433–2447
Nair M.G.,
Safir G.R. & Siquiera J.O., 1991. Isolation and identification of vesicular-arbuscular mycorrhiza
stimulatory compounds from Clover (Trifolium 41 repens)
roots. Appl.Environ. Microbiol., 57,
434-439.
Nakajima K, Sena G, Nawy T, Benfey PN (2001)
Intercellular movement of the putative transcription factor SHR in root patterning.
Nature 413:307–311
Nordstrom LJ, Clark CA, Andersen B, Champlin SM,
Schwinefus JJ (2006) Effect of ethylene glycol, urea, and N-methylated glycines
on DNA thermal stability: the role of DNA base pair composition and hydration.
Biochemistry 45:9604–9614
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M
(2007) ARF7 and ARF19 regulate lateral root formation via direct activation of
LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130
O'Neill G.A., Radley R.A. & Chanway C.P., 1992.
Variable effects of emergencepromoting rhizobacteria on conifer seedling growth
under nursery conditions. Biol. Fertil. Soils, 13, 45-49.
Paponov IA, Teale WD, Trebar M, Blilou I, Palme K
(2005) The PIN auxin efflux facilitators: evolutionary and functional
perspectives. Trends Plant Sci 10:170– 177
Parizot B, Laplaze L, Ricaud L, Boucheron-Dubuisson E,
Bayle V, Bonke M, De Smet I, Poethig SR, Helariutta Y, Haseloff J, Chriqui D,
Beeckman T, Nussaume L (2008) Diarch symmetry of the vascular bundle in
Arabidopsis root encompasses the pericycle and is reflected in distich lateral
root initiation. Plant Physiol 146:140–148
Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li
Z (2008) Mapping QTLs of root morphological traits at different growth
stages in rice. Genetica 133:187–200
Rani Debi B, Taketa S, Ichii M (2005) Cytokinin inhibits
lateral root initiation but stimulates lateral root elongation in rice (Oryza
sativa). J Plant Physiol 162:507– 515
Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin
movement from the
shoot into the root inhibits lateral root development
in Arabidopsis. Plant Physiol 118:1369–1378
Remans T, Nacry P, Pervent M, Filleur S, Diatloff E,
Mounier E, Tillard P, Forde BG, Gojon A (2006a) The Arabidopsis NRT1.1 transporter
participates in the signaling pathway triggering root colonization of nitrate-rich
patches. Proc Natl Acad Sci USA 103:19206–19211
Remans T, Nacry P, Pervent M, Girin T, Tillard P,
Lepetit M, Gojon A (2006b) A central role for the nitrate transporter NRT2.1 in
the 42 integrated morphological and
physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921
Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos
T (2006)
Identification of QTL controlling root growth response
to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle
T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An
auxin-dependent distal organizer of pattern and polarity in the Arabidopsis
root. Cell 99:463–472
Sabatini S, Heidstra R, Wildwater M, Scheres B (2003)
SCARECROW is involved in positioning the stem cell niche in the Arabidopsis
root meristem. Genes Dev 17:354–358
Sarkar AK, Luijten M,Miyashima S, Lenhard M, Hashimoto
T, Nakajima K, Scheres B, Heidstra R,Laux T (2007) Conserved factors regulate
signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature
446:811–814
Sato Y, Nishimura A, Ito M, Ashikari M, Hirano HY,
Matsuoka M (2001) Auxin response factor family in rice. Genes Genet Syst
76:373–380
Scheres B, Laurenzio LD, Willemsen V, Hauser MT,
Janmaat K, Weisbeek P,
Benfey PN (1995) Mutations affecting the radial
organisation of the Arabidopsis root display specific defects throughout the
embryonic axis. Development 121:53–62
Schipper B., Scheffer R.J., Lugtenberg B.J.J. &
Weisbeck P.J., 1995. Biocoating of seeds whith plant growth-promoting
rhizobacteria to improve plantestablishment. Outlook Agric., 24, 179-185.
Schönwitz R. & Ziegler H., 1989. Interaction of
maize roots and rhizosphere
microorganisms. Z. Pflanzenern. Bodenk., 152, 217-222.
Shishido M., Paterson D.L., Massicote H.B. &
Chanway C.P., 1996. Pine and spruce seedling growth and mycorrhizal infection
after inoculation with plant growth promoting Pseudomonas strains. FEMS
Microbiol. Ecol., 21, 109-119.
Shuai B, Reynaga-Pena CG, Springer PS (2002) The
lateral organ boundaries gene defines a novel, plant-specific gene family.
Plant Physiol 129:747–761
Song SK, Hofhuis H, Lee MM, Clark SE (2008) Key
divisions in the early arabidopsis embryo require POL and PLL1 phosphatases
to establish the root stem cell organizer and vascular axis.Dev Cell 15:98–109
Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C,
Ricaud L, Blanchet A, Nussaume L,Desnos T (2007) Root tip contact with
low-phosphate media reprograms plant root architecture.Nature Genet 39:792–796
Swarup K, Benkova E, Swarup R, Casimiro I, Peret B,
Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D,
James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel
K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G,Benfey P, Friml J,
Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3
promotes lateral root emergence. Nature Cell Biol 10:946–954
Taramino G, Sauer M, Stauffer JL Jr, Multani D, Niu X,
Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB
domain protein that is a key regulator of embryonic seminal and post-embryonic
shoot-borne root initiation. Plant J 50:649–659
Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S
(2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root
development. Plant J 37:801–814
Tranbarger
TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Douras P, Touraine B (2003) Transcription factor genes with
expression correlated to nitrate-related root plasticity of Arabidopsis thaliana.
Plant Cell Environ 26:459– 469
van den Berg C, Willemsen V, Hage W, Weisbeek P,
Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by
directional signalling. Nature 378:62–65
van den Berg C, Weisbeek P, Scheres B (1998) Cell fate
and cell differentiation status in the Arabidopsis root. Planta 205:483–491
Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet
I, Van Isterdael G,
Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki
H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient
for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis
thaliana. Plant Cell
17:3035–3050
Wang S, Ichii M, Taketa S, Xu L, Xia K, Zhou X (2002)
Lateral root formation in rice (Oryza sativa): promotion effect of jasmonic
acid. J Plant Physiol 159:827– 832
Varese
G.C. et al., 1996. Bacteria
associated with Suillus grevillei sporocarps and ectomycorrhizae and their
effect on in vitro growth of the mycobiont. Symbiosis, 21, 129-147.
Vonderwell J.D. & Enebak S.A., 2000. Differential
effects of rhizobacterial strain and dose on the ectomycorrhizal colonization
of loblolly pine seedlings. For. Sci., 46(3), 411-437.
Yao M.K., Tweddell R.J. & Desilets H., 2002.
Effect of two vesicular-arbuscular
mycorrhizal fungi on the growth of micropropagated
potato plantlets and on the extent of diseases caused by Rhizoctonia solani.
Mycorrhiza, 12, 235-242.
Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T,
Kientz M, Wilmoth JC,
Reed JW, Jurgens G (2005) Developmental specificity of
auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J
24:1874–1885
Welch D, Hassan H, Blilou I, Immink R, Heidstra R,
Scheres B (2007) Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit
asymmetric cell division and stabilize tissue boundaries by restricting
SHORT-ROOT action. Genes Dev 21:2196–2204
Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G,
Guilfoyle TJ, Alonso JM,
Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote
leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130
Zhang H, Forde BG (1998) An Arabidopsis MADS box gene
that controls nutrient-induced changes in root architecture. Science
279:407–409
Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual
pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA
96:6529–6534
Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs
for lateral root branching and length in maize (Zea mays L.) under differential
phosphorus supply. Theor Appl Genet 111:688–695
Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006)
Detection of quantitative trait loci for seminal root traits in maize (Zea mays
L.) seedlings grown under differential phosphorus levels. Theor Appl Genet
113:1–10.